研究方向
教育背景
2006.09-2011.09, 中国科学技术大学8858cc永利唯一官方网, 博士
2009.09-2011.09, University of California, Santa Cruz, 联合培养博士
工作经历
2018.01-至今, 8858cc永利唯一官方网, 副教授;
2014.08-2017.12, 8858cc永利唯一官方网, 助理教授;
2012.07-2014.07, 四川大学数学学院, 博士后;
2011.11-2012.06, 四川大学数学学院, 访问学者;
论文与出版物
Han, Jianzhi; Bimodules and universal enveloping algebras associated to VOAs. Israel J. Math.247 (2022),905-922.
J. Han, H. Li, Y. Xiao, Cocommutative vertex bialgebras. J. Algebra 598 (2022), 536-569.
Han, Jianzhi; Xiao, Yukun; Associative algebras and universal enveloping algebras associated to VOAs. J.Algebra 564 (2020), 489–498.
Chen, Haibo; Han, Jianzhi; A class of simple non-weight modules over the Virasoro algebra. Proc. Edinb. Math. Soc. (2) 63 (2020), 956–970.
Chen, Guobo; Han, Jianzhi; Su, Yucai; Some modules over Lie algebras related to the Virasoro algebra. J. Math. Soc. Japan,72 (2020), no. 1, 61–72.
Chen, Haibo; Han, Jianzhi; Su, Yucai; Yue, Xiaoqing; Two classes of non-weight modules over the twisted Heisenberg–Virasoro algebra. Manuscripta Math. 160 (2019), no. 1-2, 265–284.
Han, Jianzhi; Chen, Qiufan; Su, Yucai; Modules over the algebra Vir(a,b). Linear Algebra Appl. 515 (2017), 11–23.
Han, Jianzhi; Ai, Chunrui; Three equivalent rationalities of vertex operator superalgebras. J. Math. Phys. 56 (2015), no. 11, 111701, 7 pp.
Dong, Chongying; Han, Jianzhi; On rationality of vertex operator superalgebras. Int. Math. Res. Not. IMRN 2014, no. 16, 4379–4399.
Ai, ChunRui; Han, JianZhi; Regularity of vertex operator superalgebras. Sci. China Math. 57 (2014), no. 5, 1025–1032.
Dong, Chongying; Han, Jianzhi; Some finite properties for vertex operator superalgebras. Pacific J. Math. 258 (2012), no. 2, 269–290.
Han, Jianzhi; Li, Junbo; Su, Yucai; Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J. Math. Phys. 50 (2009), no. 8, 083504, 12 pp.
科研项目
2023.01-2026.12, 《顶点算子代数结构与表示理论的若干问题》, 国家自然科学基金面上项目, 主持;
2016.01-2018.12, 《顶点算子代数的诱导模理论及其扩张》, 国家自然科学基金青年基金, 主持;
2015.01-2017.12, 《顶点算子代数的orbifold理论》, 上海市教委科研创新项目, 主持;
2013.09-2014.08, 《顶点算子代数的有理性》, 博士后基金一等, 主持;
获奖荣誉
教育部高等学校科学研究优秀成果奖:
自然科学奖二等奖, 《李(超)代数、顶点算子代数表示理论的若干问题 》, 第三完成人